June 29

Problem 1.

Let $V = V_1 \oplus V_2$ be a direct sum decomposition. Prove there is a unique linear map $\Pi: V \to V$ such that

- (a) $\Pi(v) = v$ for $v \in V_1$, and
- (b) $\Pi(v) = 0 \text{ for } v \in V_2.$

Show that this map satisfies $\Pi^2 = \Pi$.

We can do this same procedure for the decomposition $V = V_2 \oplus V_1$. Let Π^{\perp} be the map we get by doing so (pronounced "pi perp"). Prove that

$$\Pi + \Pi^{\perp} = 1.$$

Problem 2.

Let $W \subseteq V$ be a subspace. Show that W^{\perp} is a subspace of V, and that

$$V = W \oplus W^{\perp}$$

is a direct sum decomposition.

Problem 3.

Show that

$$\langle \Pi(\mathbf{v}) \mid \Pi(\mathbf{v}) \rangle + \langle \Pi^{\perp}(\mathbf{v}) \mid \Pi^{\perp}(\mathbf{v}) \rangle = \langle \mathbf{v} \mid \mathbf{v} \rangle$$

for any orthogonal projection operator Π .

Problem 4.

Show that any linear operator on \mathbb{C}^n can be written as a sum of ket-bras.