July 8

Problem 1.

Prove the following properties of operators on \mathbb{C}^n .

- (a) If L is a linear operator, then $\ker(L^*) = (\operatorname{im} L)^{\perp}$ and $\operatorname{im}(L^*) = (\ker L)^{\perp}$.
- (b) A projection operator Π is an orthogonal projection if and only if Π is a self-adjoint operator.

Problem 2.

Let L be a linear operator on $V = \mathbb{C}^n$ with eigenspaces $\{V_{\lambda}\}_{{\lambda} \in \mathbb{C}}$. Check that the following statements are equivalent:

- (a) $V = \bigoplus_{\lambda \in \mathbb{C}} V_{\lambda}$ is an orthogonal decomposition.
- (b) There exists an orthonormal basis for V consisting of eigenvectors of L.
- (c) There exists a unitary operator U such that the matrix representation of ULU^{-1} relative to the standard basis is a diagonal matrix.

If you have time, figure out the analogous list of statements for (non-unitarily) diagonalizable operators.

Problem 3.

Prove the following about commuting operators L, L' on \mathbb{C}^n , with eigenspaces $\{V_{\lambda}\}_{{\lambda}\in\mathbb{C}}$ and $\{V'_{\lambda}\}_{{\lambda}\in\mathbb{C}}$ respectively.

- (a) For all $\lambda \in \mathbb{C}$, L' preserves V_{λ} .
- (b) L and L' have a simultaneous eigenvector.

Problem 4.

Prove that if U is a unitarily diagonalizable operator on \mathbb{C}^n , then U is normal.

Problem 5.

Prove that if X, Y are subspaces of \mathbb{C}^n , then $L(X) \subseteq Y$ if and only if $L^*(Y^{\perp}) \subseteq X^{\perp}$. An important corollary of this is that if L preserves a subspace X, then L^* preserves X^{\perp} .