July 6

Problem 1.

Let $|s\rangle$, $|\omega\rangle$ be two nonzero vectors in a quantum system V. Say the current state of the system is (the span of) $|s\rangle$. Let Π be the orthogonal projection onto $\mathbb{C}\,|\omega\rangle$. Let $|s'\rangle \doteq \Pi^{\perp}\,|s\rangle$. Let W be the 2-dimensional subspace spanned by $|s\rangle$ and $|\omega\rangle$, which has orthonormal basis $|\omega\rangle$, $|s'\rangle$. A depiction of W is shown in Figure 1. Let θ denote the angle between $|s\rangle$ and $|s'\rangle$; assume that $0 < \theta < \frac{\pi}{4}$.

Assume U_{ω} , U_s are unitary operators which preserve W. Assume also that if we restrict these operators to W, then U_{ω} acts by reflecting over the $|s'\rangle$ axis, and U_s acts by reflecting over the $|s\rangle$ axis.

- (a) Check that U_sU_ω is a rotation operator (when restricted to W)
- (b) Find its angle of rotation in terms of θ
- (c) Determine the minimum number of times that we need to Apply U_sU_ω to the current state to make it so that there is at least a 50% chance that the answer to Is the current state contained in $\mathbb{C}\,|\omega\rangle$? is yes.
- (d) Verify that the operators U_{ω} and U_s defined in class, with the states $|\omega\rangle$ and $|s\rangle$ used in Grover's algorithm, satisfy the hypotheses of this problem. If you have time, find θ in terms of N.

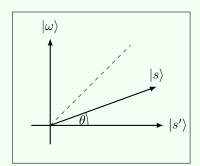


Figure 1:

Problem 2.

Let L be a linear operator on \mathbb{C}^n . Show that there is a unique linear operator L^* such that

$$\langle L\mathbf{v} \mid \mathbf{w} \rangle = \langle \mathbf{v} \mid L^*\mathbf{w} \rangle$$

for all $\mathbf{v}, \mathbf{w} \in \mathbb{C}^n$.

Problem 3.

Check the following properties of the "taking adjoints" operation.

- (a) $L^{**} = L$
- (b) $(L_1L_2)^* = L_2^*L_1^*$
- (c) $(\lambda L)^* = \lambda^* L$
- (d) $(|\mathbf{v}\rangle\langle\mathbf{w}|)^* = |\mathbf{w}\rangle\langle\mathbf{v}|$.
- (e) $(L_1 + L_2)^* = L_1^* + L_2^*$.