July 29

Problem 1.

Let $f:X\to\mathbb{C}$ be measurable. Recall that

$$||f||_{\infty} \doteq \inf\{C \geq 0 \mid |f(x)| \leq C \text{ almost everywhere.}\}.$$

Show that f is essentially bounded iff $||f||_{\infty} < \infty$. If f is essentially bounded, verify also the following:

- (a) Let $N = \{ x \mid |f(x)| > ||f||_{\infty} \}$. Then $\mu(N) = 0$.
- (b) If $C < ||f||_{\infty}$, then $E_C = \{x \mid |f(x)| > C\}$ has positive measure.
- (c) Let N be as in (a). Show that

$$\sup_{x \in X \setminus N} |f(x)| = ||f||_{\infty}.$$

(d) Let $\psi \in L^2(X)$. Show that $||f\psi||_2 \le ||f||_{\infty} ||\psi||_2$.

Problem 2.

We work in the Hilbert space $L^2(X)$. Let $f: X \to \mathbb{C}$ be an essentially bounded function.

- (a) Show that $L_f^* = L_{f^*}$. Conclude that L_f is normal.
- (b) Let Π_E^X (or just Π_E) denote the operator L_{1_E} , where 1_E is the indicator function of E. Show that Π_E^X is an orthogonal projection. What are its image and kernel?
- (c) When is L_f unitary?
- (d) What is the spectrum of L_f ? What if $X = \mathbb{R}$ and f is continuous?