July 25

Problem 1.

Assume that $\mu: \mathcal{B}_{\mathbb{R}} \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ is such that

- (i) $\mu(\varnothing) = 0$
- (ii) $\mu\left(\bigsqcup_{n=1}^{\infty} E_n\right) = \sum_{n=1}^{\infty} \mu(E_n)$ for any pairwise disjoint sequence E_1, E_2, \ldots in $\mathcal{P}(\mathbb{R})$.
- (iii) $\mu([0,1]) = 1$.
- (iv) $\mu(x+E) = \mu(E)$ for any $E \subseteq \mathbb{R}$ and $x \in \mathbb{R}$.

Prove the following:

- (a) If $E_1 \subseteq E_2$ then $\mu(E_1) \leq \mu(E_2)$.
- (b) Prove that any countable set is Borel and has measure 0.
- (c) If $E_1 \subseteq E_2 \subseteq ...$ is an increasing sequence of Borel sets, then

$$\mu(\bigcup_{n=1}^{\infty} E_n) = \sup_{n \in \mathbb{N}} \mu(E_n).$$

- (d) Prove that $\mu([a,b)) = b a$ for any $b \ge a$.
- (e) Prove that $\mu((a,b)) = \mu([a,b]) = b a$ for any $b \ge a$.

Problem 2.

Let (X, \mathcal{M}) be a measurable space. Show the following properties of measurable functions $X \to \mathbb{R}$. (Here we are using the Borel σ -algebra on \mathbb{R} .) You can use the fact that a function $f: X \to \mathbb{R}$ is measurable if and only if $f^{-1}((-\infty, t])$ is measurable for all $t \in \mathbb{R}$.

- (a) If f is measurable and $a \ge 0$ is a scalar, then af is measurable.
- (b) If f, g are measurable, then f + g is measurable.
- (c) If f is measurable and $g: \mathbb{R} \to \mathbb{R}$ is continuous, then $g \circ f$ is measurable.

Problem 3.

Let (X, \mathcal{M}, μ) be a measure space. Prove the dominated convergence theorem: if (f_n) is a sequence of measurable functions $X \to \mathbb{R}$ converging to a measurable function f, and there exists an integrable function $g: X \to \mathbb{R}_{\geq 0}$ such that $|f_n| \leq g$ for all n, then f is integrable and

$$\lim_{n\to\infty} \int_X |f_n - f| \ d\mu = 0.$$

In particular, $\lim_n \int_X f_n \ d\mu = \int_X f \ d\mu$.