July 22

Problem 1.

We will show that there is no consistent way to define a translation-invariant measure on all subsets of \mathbb{R} (at least, assuming the axiom of choice). Assume that $\mu: \mathcal{P}(\mathbb{R}) \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ is such that

(i) $\mu(\varnothing) = 0$

(ii)
$$\mu\left(\bigsqcup_{n=1}^{\infty} E_n\right) = \sum_{n=1}^{\infty} \mu(E_n)$$
 for any pairwise disjoint sequence E_1, E_2, \ldots in $\mathcal{P}(\mathbb{R})$.

(iii) $\mu([0,1]) = 1$.

(iv) $\mu(x+E) = \mu(E)$ for any $E \subseteq \mathbb{R}$ and $x \in \mathbb{R}$.

Let \mathbb{R}/\mathbb{Q} be the group quotient of \mathbb{R} by its subgroup \mathbb{Q} ; recall that

$$\mathbb{R}/\mathbb{Q} \doteq \{x + \mathbb{Q} \mid x \in \mathbb{R}\}.$$

Let $f: \mathbb{R}/\mathbb{Q} \to \mathbb{R}$ be a function such that $f(x+\mathbb{Q}) \in x+\mathbb{Q}$ for all $x \in \mathbb{R}$. Let E be the image of f in \mathbb{R} .

(a) Show that there is a countable set $\{q_i\}_{i\in I}$ of real numbers such that

$$\bigcup_{i \in I} (q_i + E) = \mathbb{R}.$$

Conclude that $\mu(E)$ is nonzero.

- (b) Let r > 0. Show that every coset in \mathbb{R}/\mathbb{Q} intersects the interval [0, r] nontrivially.
- (c) Assume that $f(x + \mathbb{Q}) \in (x + \mathbb{Q}) \cap [0, \frac{1}{2}]$ for all x. (This is possible by part (b).) Then $E \subseteq [0, \frac{1}{2}]$. Show that there is a countably infinite set $\{q_i\}_{i \in I'}$ such that

$$\bigcup_{i \in I} (q_i + E) \subseteq [0, 1].$$

Conclude that $\mu([0,1]) = \infty$ or that $\mu(E) = 0$.

This contradiction is what motivates us to define the measure only for *measurable sets* (or, often, just for *Borel sets*). A similar construction is the origin of the Banach–Tarski paradox.

Problem 2.

Assume that $\mu: \mathcal{B}_{\mathbb{R}} \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ is such that

- (i) $\mu(\varnothing) = 0$
- (ii) $\mu\left(\bigsqcup_{n=1}^{\infty} E_n\right) = \sum_{n=1}^{\infty} \mu(E_n)$ for any pairwise disjoint sequence E_1, E_2, \ldots in $\mathcal{P}(\mathbb{R})$.
- (iii) $\mu([0,1]) = 1$.
- (iv) $\mu(x+E) = \mu(E)$ for any $E \subseteq \mathbb{R}$ and $x \in \mathbb{R}$.

Prove the following:

(a) If $E_1 \subseteq E_2 \subseteq ...$ is an increasing sequence of Borel sets, then

$$\mu(\bigcup_{n=1}^{\infty} E_n) = \sup_{n \in \mathbb{N}} \mu(E_n).$$

- (b) Prove that $\mu([a,b)) = b a$ for any $b \ge a$.
- (c) Prove that $\mu((a,b)) = \mu([a,b]) = b a$ for any $b \ge a$.
- (d) Prove that any countable set is Borel and has measure 0.